Watch and Learn: Semi-Supervised Learning of Object Detectors from Videos
Ishan Misra, Abhinav Shrivastava, Martial Hebert
Carnegie Mellon University

Goal: Long hours of unlabeled videos + few labels → Object Detectors

Discovered
- Multiple objects per frame
- Both static & moving objects

Relaxes Standard Assumptions
- Works in the presence of unrelated/distractor videos
- Does not require exhaustive annotation of input video frames
- Does not assume salient motion
- No explicit negative data required

Object Detectors
- Few labeled examples (no exhaustive labeling)
- No explicit negative data required
- Does not require exhaustive labeling

Results: Ablation Analysis
- Qualitative results: Subset of bounding boxes automatically labeled and used to train ESVMs across iterations
- Training detectors on automatically labeled data
- Evaluation of the labeling process

Results: Scalability and Generalization
- Qualitative results: Subset of bounding boxes automatically labeled and used to train ESVMs across iterations
- Evaluation of automatically labeled data

Detection Error Modes
- Inverse HOGs visualization for trained ESVM
- Inverse HOGs visualization for ESVM detector

Verification using De-correlated errors
- Multi-view Verification: Detect in one feature space; verify detections in another

Selection of new positives
- Goal: Diversity in training set for next iteration
- Why? Repetition in videos
- How? Compute similarity between existing models and newly labeled boxes; select diverse (unexplained) new boxes.

Candidate box selection
- Edge weights = $\Delta_{flow} + \Delta_{area} + \Delta_{location}$
 - Formulated as shortest path through a Trellis graph
 - Solved using DP
 - Object Proposal boxes augment weak detection prior

Diffusion in pose of discovered examples

Object Proposal boxes
- VIRAT dataset

Goal: Long hours of unlabeled videos + few labels → Object Detectors

Verification using De-correlated Errors
- Incremental and Robust training of detectors
 - Avoided detection mistakes
 - Avoided tracking mistakes

Selection of new positives
-discover candidate examples by conservative short-term reliable tracking