Object Detection

- Generally reduced to Image Classification:
 - This reduction introduces new problems unique to detection
 - Huge imbalance b/w annotated Foreground (fg) objects & Background (bg) examples

Bootstrapping to the rescue!

- Simple, yet powerful algorithm:
 - Fix Training Set
 - Update Model
 - Freeze Model
 - Find Hard Detectables

Mainstay in Object Detection for >2 years

- Online Neural Networks:
 - [Girshick et al., 2014]
 - [SPPNet, et al., 2014]
 - [BG: Deformable ConvNet, et al., 2016]

Why don’t state-of-the-art detectors use bootstrapping anymore?

- Multi-stage pipelines are being replaced by end-to-end systems

Hard Negative Mining for SVMs

- Stochastic Gradient Descent (SGD)

Why is standard bootstrapping not trivial in SGD?

- Training Object Detector:
 - Fix Training Set
 - Update Model
 - Freeze Model
 - Find Hard Detectables
 - Iterate

Why use OHEM?

- Simple and easy to implement
 - Simplifies training: reduces costly to tune hyperparameters
 - Results in better training and higher performance

Stochastic Gradient Descent (SGD) version:

Object-agnostic method used in most Region-based Object Detectors, e.g., R-CNN, Girshick et al., 2014

Online Hard Example Mining (OHEM) + SGD version:

- Simple, effective, to implement, simplified (and improved) training, consistent and significant improvements

Why just hard when you can see all?

- When using all RoIs:
 - Too many easy RoIs (~0.99) dilute the impact of useful (hard) RoIs
 - Need to carefully adjust the LR to account for a larger batch-size
 - ~10% RoIs
 - OHEM operates this heuristic & is much faster to train w/o the need to tweak hyperparameters

Robust Gradient Estimates

- Fewer images in a mini-batch leads to correlated RoIs, unstable gradients and/or slower convergence
 - For FRNC: ~1MP for N=1 vs. N=2
 - No impact for OHEM, demonstrates robustness

Training a ConvNet Detector: (Fast R-CNN)

- Feature pyramid used in most Region-based Object Detectors, e.g., R-CNN, Girshick, 2015

OHEM: Main Results (VOC07, VOC12, COCO)

<table>
<thead>
<tr>
<th>Method</th>
<th>M</th>
<th>B</th>
<th>train set</th>
<th>07 mAP</th>
<th>Method</th>
<th>M</th>
<th>B</th>
<th>train set</th>
<th>12 mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRNC</td>
<td>07</td>
<td>69.9</td>
<td>07</td>
<td>69.8</td>
<td>0.75</td>
<td>FRNC</td>
<td>12</td>
<td>69.7</td>
<td>0.75</td>
</tr>
<tr>
<td>FRCN</td>
<td>07</td>
<td>72.4</td>
<td>07</td>
<td>72.7</td>
<td>0.75</td>
<td>FRCN</td>
<td>12</td>
<td>70.7</td>
<td>0.75</td>
</tr>
<tr>
<td>MR-CNN</td>
<td>07</td>
<td>74.9</td>
<td>07</td>
<td>72.9</td>
<td>0.75</td>
<td>MR-CNN</td>
<td>12</td>
<td>72.9</td>
<td>0.75</td>
</tr>
<tr>
<td>Ours</td>
<td>07</td>
<td>75.1</td>
<td>07</td>
<td>72.4</td>
<td>0.75</td>
<td>Ours</td>
<td>12</td>
<td>71.9</td>
<td>0.75</td>
</tr>
<tr>
<td>MR-CNN</td>
<td>07</td>
<td>71.0</td>
<td>07</td>
<td>71.9</td>
<td>0.75</td>
<td>MR-CNN</td>
<td>12</td>
<td>71.9</td>
<td>0.75</td>
</tr>
<tr>
<td>Ours</td>
<td>07</td>
<td>74.6</td>
<td>07</td>
<td>71.9</td>
<td>0.75</td>
<td>Ours</td>
<td>12</td>
<td>73.9</td>
<td>0.75</td>
</tr>
<tr>
<td>MR-CNN</td>
<td>07</td>
<td>74.6</td>
<td>07</td>
<td>71.9</td>
<td>0.75</td>
<td>MR-CNN</td>
<td>12</td>
<td>73.9</td>
<td>0.75</td>
</tr>
<tr>
<td>Ours</td>
<td>07</td>
<td>74.6</td>
<td>07</td>
<td>71.9</td>
<td>0.75</td>
<td>Ours</td>
<td>12</td>
<td>73.9</td>
<td>0.75</td>
</tr>
<tr>
<td>RM-CNN</td>
<td>07</td>
<td>74.6</td>
<td>07</td>
<td>71.9</td>
<td>0.75</td>
<td>RM-CNN</td>
<td>12</td>
<td>73.9</td>
<td>0.75</td>
</tr>
<tr>
<td>Ours</td>
<td>07</td>
<td>74.6</td>
<td>07</td>
<td>71.9</td>
<td>0.75</td>
<td>Ours</td>
<td>12</td>
<td>73.9</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Understanding OHEM

- Ablation analysis and more

Online Hard Mining vs. Heuristics

| bg lo 0.1 used to approximate hard negative mining
| +1 MAP for VOC07, no impact VOC16
| Sub-optimal: ignores hard RoIs (e.g., paintings)
| OHEM naturally doesn't require this heuristic & automatically selects hard examples

Bells and Whistles: Ablative Analysis

- Impact of Multi-scale & Anchor Box Regression
- ROIs clean gradient-based loss mining

Key Insights:

- Even though a few images are sampled (N=2), each image has 1000s of RoIs
- Replace Heuristic Sampling with Hard Example Sampling
- How to freeze the model efficiently to find hard examples?
- Forward pass is already freezes the model, exactly for one SGD iteration
- How is it online?
 - Hard Examples sampling is performed inline with online SGD iteration
- Is this efficient?
 - ConvNet forward-backward pass and RoI Network backward-pass remain intact
 - Only addition is RoI Network forward-pass

Online Training:

- Study the empirical training loss (mean loss per RoI)
 - during mini-batch SGD

- Footer code available! https://github.com/